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Bad Attitudes: Rethinking the Role of
Propositional Attitudes in Cognitive Science

Jonathan Martin

Introduction

Mental representation is a central concept in cognitive science. It is the 
causal story involving “symbolic structures” that form the explanatory 

schema of classical cognitive science. Objects that populate the particular 
ontology of a scientific theory must have an instrumental role in explaining 
the processes in question. As such, it is requisite that the explanatory vehi-
cles within a theory be in some way informative with regards to a particular 
inquiry. Due to this methodological presupposition, the entities invoked in 
a theory can be evaluated in terms of their explanatory value or their status 
as causal-explanatory entities altogether. In pursuing a more explanatory 
cognitive science, I will be advancing an eliminative program which ad-
dresses the need for representational language but questions the status of 
propositional attitudes as causal objects in computational explanations.

Propositional attitudes are sentences consisting of an intensional verb 
followed by a content clause; for example, “x believes that y.” It is not my 
aim simply to reiterate Paul Churchland’s claim that folk psychology is an 
empirical theory (and thus falsifiable). Rather, I will show that (1) proposi-
tional attitudes as causal entities are inadequate and largely uninformative 
for explaining representation computationally; and (2) understanding the 
dynamics of networks of neurons (though I will rely on artificial models) 
with relation to representation will require description in non-propositional 
terms using a dynamic neurobiological model. I will argue that the func-
tional story, which will inform us about how the brain represents, will be 
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concerned with causal neurobiological functions and will most likely ac-
count for representation in a highly non-propositional way.

Classical Minds: Folk Psychology and Propositional Attitudes

The accounts of the mind in classical cognitive science (of which 
Fodor’s language of thought hypothesis is paradigmatic) have been commit-
ted to two fundamental propositions: (A) mental content is determined by 
the causal effects and input/output relations of a representational system; 
and (B) the causal story of A is best described in the language of propo-
sitional attitudes (PAs). I will focus on B. Formulations of mental events 
under this framework take the form of citing certain intensional states (be-
liefs, desires, hopes, etc.) as explanations for behavior. For example, it is 
Jack’s desire to drive, together with his belief that his car is in the garage, 
that explains why he grabs his keys and heads to the garage. Though this 
action is surely dependent on other intensional states (he believes that his 
keys are necessary to start the car), the rough picture of this view of the 
mind should be clear. One can even present predictive counterfactuals such 
as “If Jack wanted to take a ride and believed his car was in the garage, but 
also believed that cars are very likely to explode at any moment, he would not 
grab his keys and head to the garage.” The explanatory ability of giving such 
propositional reasons as causes, at first glance, seems obvious. Indeed, it is 
hard to conceive of what a denial of these reasons might even mean.

Still, there are further commitments of classicism to reveal before we 
proceed. One important commitment is noted by Andy Clark:

The folk framework provides both a model of our compu-
tational organization and a set of contents [propositional 
attitudes] which have reasonably close analogues in the 
inner economy . . . [such that] strings of inner symbols 
can stand in sufficiently close relation to the contents 
cited in ordinary mentalistic discourse for us to speak 
of such contents’ being tokened in the string and having 
causal powers in virtue of the causal powers of the string. 
(Associative Engines 6)

The classical view in cognitive science is committed to a system of “syntacti-
cally structured representations . . . [in which] the computational processes 
. . . can be described by transition or derivation rules” (46). While clas-
sicists such as Fodor might insist there should be only the requirement of 
a correspondence between a PA’s proposition and the representational and 
structural processes of a cognitive system, the causal efficacy of these sen-
tences in the brain is indispensable to the classical picture.
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Concepts, Recombination, and Systematicity

As established, the classical cognitive scientist describes the inner 
workings of the human mind as a series of operations over syntactically de-
fined representational states. Andy Clark cites a good, working definition 
from Newell and Simon:

A physical-symbol system . . . is a physical device that 
contains a set of interpretable and combinable items 
(symbols) and a set of processes that can operate on 
the items (copying, conjoining, creating, and destroying 
them according to instructions). (Mindware 28)

The model of classical cognitive science takes its power from the general 
usefulness and breadth of abilities realized on serial processing computers 
(which are syntactic, physical-symbol systems) and the knack people seem 
to have for recombining words and concepts. For example, anyone who has 
the concept of a bird should be able to imagine a bird in different places 
(in a bush, in a person’s hand, etc.). Thus, concepts are said to be atomistic 
in that they can be used in multiple domains or recombined scenarios. If 
one can understand “Sarah found the bear” then one should be able to 
understand “the bear found Sarah.”

Another strength of the classical paradigm is that it provides a straight-
forward answer to the issue of the systematicity of cognition. Because of 
the symbolic nature of the representations in classical theories, systematic 
abilities (such as logic) are easily put into propositional form. For example, 
if David knows that all triangles have three sides and he knows that x is a 
triangle, then ceteris paribus he knows that x has three sides. The property 
of systematicity plays a large role in accounting for cognition in classical 
computational cognitive science because it provides a picture of what types 
of mental contents there are as well as the different kinds of computational 
transition rules that might be part of the computational hardware. This 
is meant to show why a person who comprehends “Kelly is a sister” and 
“sisters are female” will be able to deduce that Kelly is a girl. While the 
explanatory weight of this propositional view of mental content is clear, I 
will now address some objections to this view.

A Major Position on PAs and Objections

Though it is my intention to reject PAs as part of explanatory cog-
nitive science, there are a few major positions which offer reasons for 
retaining these entities.
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Fodor’s Realism

Jerry Fodor’s Language of Thought Hypothesis relies on the claim 
that PAs are the only possible causal constituents of explanatory cogni-
tive theories. As such, he is committed to the idea that the ontology of 
PAs (beliefs, desires, fears, etc.) traces real symbolic entities in an “inner” 
computational economy. He states that functional cognitive states must 
be described as law-like relations between PAs, for explanations below the 
propositional level lose essential functional significance. He writes that

having a propositional attitude is being in some rela-
tion to an internal representation. In particular, having 
a propositional attitude is being in some computational 
relation to an internal representation. . . . It won’t be 
possible to construct a psychology of the kind that I 
have been envisioning unless organisms have pertinent 
descriptions as instantiations of some or other formal 
system . . . that for each propositional attitude . . . there 
is some causal state of the organism such that . . . the 
state is interpretable as a relation to a formula of the for-
mal system, and . . . being in the state is nomologically 
necessary and sufficient for . . . having the propositional 
attitude. (198–99)

This statement leaves us with a fairly clear picture of how Fodor ex-
pects to vindicate our causal-propositional theories. According to this view, 
there are nomological relations between the structures of certain proposi-
tions and the inner symbols of a syntactic computational system. These 
relations and causal effects are generally consistent with the expectations 
of folk psychology. For example, suppose Karen believes it will snow to-
night and also fears it will snow tonight. These two states are, on Fodor’s 
account, two different causal effects of the same symbolic representational 
items. The representation must, according to Fodor, bear causal relation-
ships appropriate to belief in one case, and fear in the other.

Objection 1 to Fodor’s Realism

Jerry Fodor provides a clear idea of realism regarding the status of 
propositional attitudes. If his position is correct, then folk psychological 
explanations and predictions work because they give an accurate account 
of the computational states of cognitive functioning. But if the ontology of 
folk psychology is basically accurate and the explanations and prediction 
using PAs are dependent on this essential accuracy, then it seems we must 
be able to provide nomological relationships between the posits of folk 
psychological cognitive explanations. In other words, if folk psychology is 
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an accurate account of the causal/computational states of cognition, then 
there must be law-like relations between certain mental contents. When 
the consequences of folk psychological predictions are not due to law-like 
relations, then they must be logical or analytic implications. Assuming that 
a certain bit of knowledge allows one to explain or predict certain out-
comes, there must be nomological regularities that make the predictions or 
explanations informative. But if such implications are analytic, then the re-
sults of such predictions would be scientifically uninformative; one would 
be able to explain a state of affairs or predict an outcome purely through 
conceptual analysis with no need for empirical data.

In the pursuit of demonstrating that folk psychology is an empirical 
theory, Paul Churchland provides several comparisons between folk psy-
chological predictions and familiar theories in physics:

(1) if (x) (f ) (m) [((x has a mass of m) & (x suffers a net 
force of f )) then (x accelerates at f/m)].

(2) if (x) (p) [(x fears that p) then (x desires that ~p)].

(3) if (x) (p) (q) [((x desires that p) & (x believes that (if q 
then p)) & (x is able to bring it about that q) then (bar-
ring conflicting desires or preferred strategies, x brings it 
about that q)]. (Philosophy of Mind 570)

There is clearly a structural similarity in the relation of the implications 
Churchland uses to formulate these theories. But let us look at (2), as it is 
the most simple of his folk psychological theories. What is the relationship 
between x’s fear that p and x’s desire that ~p? It seems that this might be an 
analytic implication, as “fear that p” might conceptually include the “desire 
that ~p.” If this is the case, then we are not making an important prediction 
or comprehending the relationship between two states, because both states 
are redescriptions of the same state (to fear p is to desire that ~p). I will cre-
ate a new law involving PAs that should further explicate this problem:

(4) if (x)(p) (x hopes that p) & (x finds that p) then (ceteris 
paribus, x is pleased).

This relationship should hold in all cases of wishing and hoping, 
given ceteris paribus (all things being equal) conditions hold. But does this 
relationship hold because of nomological relations between hoping and be-
ing pleased or because the implication is analytic? Another consideration 
relevant to the empirical acceptability of folk psychological theories is that 
the theories rely heavily on ceteris paribus clauses (barring confusion, higher 
motives, etc.) and require that the attitudes (for example, wishing that x and 
being pleased that x) are conceptually and logically distinct. Here, we can 
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ask some questions about the similarities and differences between these 
theories. Could force turn out to be something other than mass × accel-
eration, or would this have been a conceptual impossibility? Observation 
confirms the reliability of these physical terms and the law-like relation-
ships between these entities as they occur in physical theories. Could we 
have arrived at this conclusion merely by analyzing the concept of force? To 
put it simply, the truth of folk psychological theories, if this account holds, 
relies on the fact that the implications are the result of analytic and not 
nomological relations. The prediction that (2) makes, namely that if x fears 
that p, then x desires that ~p, can be arrived at through conceptual analysis, 
even in the absence of empirical observations.

Objection 2 to Fodor’s Realism

My second objection to Fodor’s propositional-computational account 
deals with the notion that satisfying computational accounts of cognition 
must be propositional so they do not miss the functionally significant 
features of the computational system. The argument I am objecting to 
is committed to the proposition that cognition is describable only at the 
level of abstraction found in folk psychological/propositional language. I 
shall begin with a basic example. Imagine a person playing a game of chess 
(a notably advanced cognitive ability). Each turn, the player engages in a 
process of deliberation in which a number of important cognitive abilities 
must be engaged in highly integrated ways in order to produce appropriate 
reactions to given scenarios. The process (I rely on some intuitions here) 
most likely involves an ability to discriminate pieces by shape. Now this 
discriminative capacity will necessarily be successful in a seasoned chess 
player given high levels of variation in the shape of, for example, knights. 
In examples of successful discrimination, the relevant features for the iden-
tification of chess pieces’ shapes must be computationally related to the 
process of identification. Since the various relevant physical features must 
be identified primarily through retinal stimulation and admit to a high 
degree of physical variation (shape, orientations etc.), the computational 
system involved must be able to rely on a largely general discriminative 
capacity for using shifting patterns in retinal input. This is only the first 
step, for associating appropriate movements with given pieces is signifi-
cant in the computational processes involved in strategizing over the next 
move.1 In addition, note the generality of an account of this cognitive pro-
cess citing PAs. On this account, the player’s cognitive processes are most 
adequately described as a causal web of beliefs, desires, and strategies which 

1As I will explore later, given the representational account in the non-propositional neuro-
computational view (analysis of activation patterns, prototypicality judgments, etc.), the types of 
discriminative capacities and associative abilities here are well accounted for.
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are nomologically related and produce causal effects roughly identical to 
our ordinary expectations. So let us cash out the intensional story which 
cites PAs. The player desires to put the opponent in check, believes certain 
strategies might work, and has sufficient beliefs about the shapes of pieces 
and their appropriate movements. But this account, at the propositional 
level of abstraction, would be true of any system capable of playing chess, 
no matter what goes on computationally in order to achieve the relevant 
cognitive task. Deep Blue, the famous chess-playing computer, and the hu-
man brain play chess successfully by virtue of entirely different types of 
computation. The intensional psychology of PAs, however, could be used 
with equal predictive success.

It does not take much analysis of the folk psychological explanation 
of what the player is doing and representing to see that the predictions and 
descriptions given are superficial, uninteresting, and not explanatory. In 
fact, it is the level of abstraction (cited by Fodor for the indispensability 
of PAs) that makes the theoretical success of PA attribution irrelevant to 
understanding anything but the most general computational features of 
a cognitive process. To put it simply, if we wish to understand how a certain 
cognitive process is achieved computationally, PAs will work regardless of 
the computational system involved. A person inclined toward the neuro-
computational account will be able to specify computational functioning 
at a much more interesting and causally less dubious level of description. 
How do we identify chess pieces (given damage, partial obstruction, and 
variation across sets of pieces)? The answer, which includes a number of 
beliefs (knights look like horses, are shorter than the queen, etc.), will give 
a computational account of PAs, but will most likely prove inadequate 
at providing truly explanatory or nomologically predictive cognitive sto-
ries. The story might still be true in some computationally uninteresting 
way. The agent is described and predicted accurately as wanting to win or 
strategizing that x, but the truth of these higher-level descriptions and their 
predictive success must be explained at a lower level through the description 
of representation and cognitive functions best defined non-propositionally. 
In fact, when we look at similar examples of cognitive capacities in paral-
lel distributed processing, we will find systems which store representations 
in a manner very incompatible with folk psychological descriptions and 
expectations. Still, this incompatibility does not seem to have any real ef-
fect on whether the attribution of PAs works on these non-propositional 
systems. The impotence of this incompatibility demonstrates my central 
point. A facial recognition network can be described in folk psychologi-
cal/propositional language (“This network recognizes the face as Sarah”), 
but this seems to work no matter what the causal properties of the system. 
This is because the PAs describe cognition at a level of generality highly 
divorced from computational or causal processes. There is, however, a more 
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telling and satisfactory account of this cognitive ability which occurs when 
we treat populations of neurons as a parallel computational system whose 
functioning is non-syntactic or propositional. The fact that PA attribution 
works as a tool for predicting cognition does not mean that it is a satisfac-
tory way of providing computational accounts. 

Getting to Know the Artificial Neuron Network

Since my examples employ artificial neuron network research, it is 
necessary for me to outline and describe the relevant features about these 
types of processing systems. The Artificial Neuron Network (ANN) is a clus-
ter of interconnected individual processors which are organized into layers. 
These layers are often categorized as: (1) Input Units (2) Hidden Units, and 
(3) Output Units. Each input unit is respectively connected to every hidden 
unit, and each hidden unit is connected to either additional hidden unit 
layers or to the output units. The unit is a simple processor able to give and 
receive graduated outputs of some decimal value between zero and one. 
This description is admittedly simple, but it conveys the basic idea.

Now we come to what these simple processors do when their behavior 
is coordinated. Researchers in neural-nets make use of learning algorithms 
of which, for my purposes, only a rough introduction is needed. Through 
the use of learning algorithms, researchers are able to train ANNs to rep-
resent certain significant patterns in their inputs and subsequently to give 
outputs consistent with specific domains of representation. In order to do 
so, the network is given a training set—a fixed group of inputs—and the 
output is compared with some desired input-output relation. Over time, 
the network learns by reconfiguring the weight (from zero to one) of the 
connection to the other units through various methods of comparisons to 
correct input-output relations. I will provide an example that further eluci-
dates this concept.

Putting a Name to a Face

Paul Churchland cites a powerful example of a three-layered network 
that learned to effectively represent various relationships in its inputs to a spe-
cific cognitive domain: facial recognition. Not only could this network quite 
accurately discriminate between faces and non-faces, but it could also deter-
mine the gender of the face and the person’s name. Churchland writes:

[The network’s] input layer or “retina” is a 64x64-pixel 
grid whose elements each admit of 256 different levels 
of activation or “brightness.” . . . [The] training set con-
tained 64 different photos of 11 different faces, plus 13 
photos of nonface scenes. . . . Each input cell projects a 
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radiating set of axonal end branches to each and every 
one of the 80 cells in the second layer, which . . . repre-
sents an abstract space of 80 dimensions. . . . This second 
layer projects finally to an output layer of only eight cells. 
(The Engine of Reason 40–41)

The final eight units of the network give outputs (albeit numerical 
ones) which signify various features of the picture input. These correspond 
to the picture’s being either: 1. (face/non-face) 2. (male/female) 3. (name: 
Sarah [for example]). Churchland writes: 

It achieved 100 percent accuracy, on the training set of 
images, with respect to faceness, gender, and the identity 
of the face presented. . . . A more severe and more relevant 
test occurs when we present the network with photos it has 
never seen before, that is, with various photos of the same 
people drawn from outside the training set. Here again 
the network comes through though. It identified correctly 
98 percent of novel photographs of the people encoun-
tered in its training set, missing the name and gender of 
only one female subject. . . . A third and highly intriguing 
experiment tested the network’s ability to recognize and 
identify a “familiar” person when one-fifth of the person’s 
face was obscured by a horizontal bar across the input im-
age. Surprisingly, the network’s performance was hardly 
impaired at all. (The Engine of Reason 45)

In this case one can see that the synaptic weightings of the network 
have settled into a configuration which bears appropriate outputs to cer-
tain “visual” patterns on the input units. By this I mean that certain general 
relationships in facial input patterns are reflected in the synaptic weight-
ings due to the learning process of repeated synaptic adjustment and not 
computed in terms of identifying common-sense facial features. Let us look 
at possible methods of understanding the processes involved in making 
these impressive judgments.

The Inside Story

Before we move on to issues of mental causation, we should look at a 
few of the key concepts for understanding the representational story of the 
Parallel Distributed Processor.

Representational Spaces

After hearing such a result, one might wish to understand just how 
this network is making these “smart” discriminations. There are a few key 
ways in which the network’s “concepts” can be understood, and becom-
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ing familiar with these methods will reveal more about the representa-
tional story involved. By virtue of the network’s development of appropriate 
connection weights, we can talk of the network as having an 80-dimensional 
facial “concept space” (Churchland, The Engine of Reason 46–47). This means 
that all possible faces that can be represented by the network can be located 
somewhere in a geometric “space” where distance between two possible faces 
will be indicative of the similarity or difference along some specific domains 
which are represented by the system. Each point in such a space stands 
for a specific pattern of neural activation in the network. If we were to 
understand the behavior of this computational system using the resources 
provided by the model of PAs, we would quickly find that this project fails 
as a causal story. If one were to cite the network’s “belief that females have 
eye distance/forehead proportion x” and predict the system’s outputs con-
sistently, it would live up to the expectations of the intensional stance. But 
there is reason to believe that this is decidedly not a good theory of the sys-
tem’s computational processes. First, there is nothing remotely like such a 
belief being represented or playing a role in the network (there are no struc-
tures which are causal by virtue of semantic content). Second, such a theory 
of its computational economy would both likely fail to make interesting or 
informative predictions of future behavior and will make false predictions 
when tested more in depth. But perhaps most importantly, by analyzing pat-
terns in the network, “one can see immediately that each cell comprehends 
the entire surface of the input layer . . . they seem to embody a variety of 
decidedly holistic features or dimensions of facehood, dimensions for which 
ordinary language has no adequate vocabulary” (47). But alas, though the 
intuitive propositional partitioning of facial features may fail us, there are 
some ways of finding what is going on within the neural network.

Learning Methods

An essential feature of ANNs is that they learn over time through 
experience. How they do this depends on which type of learning algo-
rithm is used. There are a number of strategies which are used in training 
ANNs, and the various strengths and weaknesses of each (as well as their 
biological feasibility) are not central to my project. Still, a short example 
of how such learning procedures work will shed some light on what a 
neuro-computational approach to mental representations might highlight. 
It seems at least that understanding both how networks in the biological 
brain represent and how they change in response to experience would be of 
prime importance to forging a new dynamic view of the mind. Many ANNs 
learn by gradient descent learning, and Paul Churchland gives a good ex-
ample of how this procedure works:
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Think of an abstract space of many dimensions, one for 
each weight in the network . . . plus one dimension 
for representing the overall error of the output vector 
on any given trial. Any point in that space represents a 
unique configuration of weights, plus the performance 
error that the configuration produces. What the learn-
ing rule does is steadily nudge that configuration away 
from erroneous positions and toward positions that are 
less erroneous. The system inches its way down an “error 
gradient” toward a global error minimum. Once there, it 
responds reliably to the relevant [inputs]. (A Neurocompu-
tational Perspective 166–67)

There are reasons to believe that this sort of gradient descent learn-
ing is not what is going on in the brain’s actual networks. For one thing, 
the comparison to a desired output would require that the biological brain 
already contains correct synaptic configuration which it used to train itself. 
In fact, there is a large degree of uncertainty as to “what features of the 
brain’s microstructure are and are not functionally relevant. . . . Even so, 
it is plain that the models are inaccurate in a variety of respects” (181). But 
concerning their relevance to the brain as a parallel computational system, 
“it is true that real nervous systems display, as their principal organizing 
features, layers or populations of neurons that project their axons en masse 
to some distinct layer or population of neurons, where each arriving axon 
divides into multiple branches [which] make synaptic connections of vari-
ous weights onto many cells at the target location” (183). Yet a good model 
of the causal dynamics of cognition requires only that it models the func-
tionally relevant features of these systems. Whatever is found to be the true 
coding strategy (or strategies) of real networks in the brain, there is reason to 
believe that a comprehension of learning will be a matter of understanding 
a process of changing various patterns in the system toward a functionally 
more effective representational “space.” 

Conclusion

Cognitive science should seek to understand cognition through 
the functioning of a computational system. Still, there are various ways 
of modeling computation. The symbolic paradigm inspired by traditional 
functionalism, where cognition is a series of operations over relationships 
between attitudes toward various symbolically structured propositions, is 
only one model of a computational system. However, there is reason to 
doubt that the intensional psychology of PAs will provide a satisfactory 
model for understanding the operations of human cognition. At most, 
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this model will survive as a useful shorthand for the complex represen-
tational systems involved in neuro-computational cognition. As a way of 
highlighting relevant perceptual or informational features of temporally ex-
tended and superficial neural activation patterns, the language of PAs will 
serve an important social purpose. However, as cognitive science should 
give us an account of the causal features of neural computation, the lan-
guage of folk psychology is too abstract to provide a satisfactory causal story. 
This is not to say that no symbolic computational system could instantiate 
cognitive processes (this is manifestly not the case), but merely that both 
PAs and folk psychology are unsatisfactory as computational theories; how 
such an architecture achieved cognitive tasks would still require a causal 
story at a lower level of description. I will allow that propositional atti-
tudes serve the important function of helping us to see broad similarities 
between different computational systems. We can say that a robot is look-
ing at a chessboard without commitment to any account of how this is 
achieved, and folk psychology allows us to notice that his human opponent 
is also engaged in a similar activity. As far as computational accounts of cog-
nition are concerned, though, the ontology of PAs and folk psychology are 
terribly insufficient. Given this consideration, the explanation of cognitive 
tasks ought to be supported by a computational study of neurobiology. The 
result would be a computational account of cognition which would be con-
tinuous with research in neurology and would benefit from the lessons of 
functionalism (content is still causally determined) while taking the causal 
talk of folk psychology much less literally.
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