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The Identity Problem in Ante Rem Structuralism 
and an Objection to Its Legitimacy

Martin albright

Structuralism is a theory in the philosophy of mathematics that 
presents mathematics as the study of certain types of relationships 
and claims mathematical objects are essentially their structural 

properties. This doctrine leads to a problem about mathematical identity 
which is particularly apparent in Stewart Shapiro’s ante rem structuralism on 
account of a rather strong constraint, called the “faithfulness constraint,” 
that the philosophy of mathematics should be descriptive. 

I will first briefly describe ante rem structuralism. Then, I will outline 
the development of what has become known as the identity problem, 
particularly the metaphysical concerns Jukka Keranen raises. Next, I explain 
a possible response to the identity problem first posited by Christopher 
Menzel who argues that the metaphysical constraints and concerns raised 
by Keranen are not an accurate interpretation of mathematics. This would 
allow ante rem structuralists to reject the identity problem as it improperly 
describes mathematics, violating the faithfulness constraint. Finally, I will 
put forth my own objection to the identity problem that, on account of the 
faithfulness constraint, all ante rem structuralism must say is that which 
mathematicians say regarding the metaphysics of mathematical identity. 
This will lead to a sort of philosophical quietism about mathematics, yet I 
will show that this is compatible with ante rem structuralism.
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1. Structuralism as a Theory of the Philosophy of Mathematics

In contrast to most traditional philosophies of mathematics 
such as platonism or nominalism about mathematics which argue that 
mathematics is the study of the abstract or concrete objects of mathematics, 
respectively, it does not matter what the specific objects of mathematics are 
to structuralists (Linnebo 11 and 102). Rather what matters is the relations 
exemplified between the objects. For example, 2 apples and 2 apples is 4 
apples and 2 + 2 = 4. The actual objects in the examples above are different, 
but the relationship itself remains the same, namely the addition relation. 
Similar to the abstract-concrete debates about mathematical objects in 
traditional philosophies of mathematics, structuralism has debates about 
the reality of structures. The realist camp of structuralism is called non-
eliminative, while the more nominalist camp is called eliminative. Non-
eliminative structuralists admit structures as real and, typically, abstract 
objects while eliminative structuralists deny the existence of any real 
structures. This taxonomy is far from a clear black-and-white, and there are 
many intermediate positions (Reck and Schiemer section 1.2). 

Ante rem structuralism admits structures as real and abstract objects 
which exist independent of any mathematics (Shapiro, Philosophy 89). It 
also has a rather complicated ontology that we address in greater detail 
later, but, briefly, the objects of mathematics are whatever could be in a 
mathematical relationship with another object. Any collection of objects 
that stand in some mathematical relationship to each other we may call 
“systems.” Then, to pick out just the relational properties of the systems, 
we let a “structure” be a real and abstract object which consists only of 
the relations exemplified by a system regardless of the actual objects of the 
system (Shapiro, Structure 146–147). 

Shapiro helps motivate ante rem structuralism with what he calls “the 
faithfulness constraint,” which says that philosophy should not change 
how mathematics is done or thought of by mathematicians (Identity 289). 
The point of the faithfulness constraint is to ensure the philosophy of 
mathematics is felicitous with mathematics itself. Mathematicians do not 
typically talk of their practice being imaginary or made-up,1 so, according 

1 Insofar as he may be considered a representative of how mathematicians consider mathematics 
to be, Penrose says, “Yet we shall find that complex numbers, as much as reals, and perhaps 
even more, find a unity with nature that is truly remarkable. It is as though Nature herself is 
as impressed by the scope and consistency of the complex-number system as we are ourselves, 
and has entrusted to these numbers the precise operations of her world at its minutest scales” 
(Penrose 73).
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to the faithfulness constraint, we must not say that the objects of study are 
not real as the eliminative structuralists do. Similarly, mathematicians talk 
of numbers as singular objects which may be expressed both independently 
and in relations to other mathematical objects. So, philosophy must 
follow suit and do the same. Structures can be motivated by noticing that 
mathematics does not particularly care what specific objects are being 
discussed so long as the relationships are maintained.

It is tempting to say that mathematical objects are real and abstract, 
but if we say this, we are then charged with the difficult task of finding a 
convincing story of how we can know of them and use them. Rejecting 
platonist principles and saying that mathematical objects are fictional or 
concrete may lead us to say that mathematical claims to some extent are 
dependent on our minds and are difficult to communicate and apply or 
are even entirely subjective (Frege 16–17). Additionally, this runs counter 
to our common intuition about mathematics. This dilemma about the 
metaphysics and epistemology of mathematical objects was first raised by 
Paul Benacerraf, and so is known as Benacerraf’s dilemma (662). 

Structuralism responds to this dilemma by adopting a relative 
ontology of mathematics. A system exemplifying a mathematical structure 
will have objects whose relationships to each other are the same as the 
relations between the relata of the structure. These relata are known as 
places in a structure. Places are real and abstract objects; however, their 
function is context dependent. They may be viewed as offices that are filled 
by objects that exemplify a mathematical structure or, in other contexts, 
may be viewed as real and abstract objects themselves (Shapiro, Philosophy 
82–83). Places are essentially their structural properties, or relations 
to other places (169). For instance, all there is to the initial place in the 
natural number structure (i.e., 0 in arithmetic, a system that exemplifies 
the natural number structure) is its being the additive identity (n + 0 = n) 
and its being the successor to nothing. The identity problem argues that 
this thesis about places in structures is problematic.

2. The Identity Problem

2.1 Commitment to Structural Properties in the Identity of Indiscernibles

Shapiro says, “If we are to have a theory of structures, we need an 
identity relation on them” (Philosophy 91). An identity relation on structures 
is any formula which is sufficient to determine if two mathematical objects 
are identical. Keranen specifically requires that an account of identity 
fulfill two criteria: there must be a way to determine whether any two 
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objects denoted by singular terms in the domain of discourse are identical 
and the account must apply for all objects in the domain of discourse (312). 
Since mathematical objects are essentially their structural properties, an 
account of identity which satisfies these requirements is: 

(II) ∀xy(x = y ↔ ∀F(Fx ↔ Fy))

where F is some structural property (316, and Burgess 287). We may follow 
the literature and refer to II as the identity of indiscernibles for mathematical 
objects.2 Following this, let a and b be structurally indiscernible if all and 
only all the structural properties of a are structural properties of b.

Here is Keranen’s argument that ante rem structuralism must commit 
to II (314):

Structuralism’s Commitment to II

(1)  If the properties of mathematical objects are 
exactly their structural properties, then all 
and only all objects which are structurally 
indiscernible are identical.

(2)  The properties of mathematical objects are exactly 
their structural properties.

(3)  Therefore, all and only all objects which are 
structurally indiscernible are identical.

The support for the first premise is as follows: both Shapiro (Philosophy, 
91) and Keranen (314) claim on the basis of a doctrine of Quine (23) 
that structuralism must furnish an account of identity for mathematical 
objects.3 For the account of identity to satisfy the two requirements listed 
above, it must follow the schema ∀xy(x = y ↔ –) where the – is replaced with 
an expression that says that all and only all the relevant properties of x and 
y are the same. This schema ensures that any two mathematical objects can 
be substituted for x and y, it will allow us to determine if they are identical, 
and it applies to all mathematical objects regardless of if they can be denoted 
by a singular term (Keranen 313). If mathematical objects only have their 
structural properties, then the schema is completed with an expression 
about structural properties, giving us II. 

2 For example: Menzel 84; Shapiro, Identity 286; Keranen 31
3 Though interesting and perhaps objectionable, this point is too large to consider in further 
detail here.
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The support for the second premise is as follows: mathematical 
objects are places in structures (Shapiro, Philosophy 77). Since there is 
nothing more to structures than particular relations whose relata are those 
places, the places in structures have only their structural properties (72). 
This commitment leads to some problems.

2.2 The Problem with II

There are cases of distinct4 objects which appear to have the exact 
same structural properties, thus making them indiscernible from and 
equivalent to each other. Perhaps the most famous example is that of the 
imaginary numbers i and –i. I will follow the convention in the literature 
and let i = –j and j = –i in order to remove ourselves from the purely linguistic 
idea that i and –i have relationships to 0 similar to that of the integers 
(complex numbers are neither positive nor negative).5 To fully realize the 
structural properties of i and j, we must begin with a short introduction of 
the complex field. 

A mathematical field is a simply a set of objects and relations on 
them, typically + and ⋅. The complex field C is simply the set of all complex 
numbers C and the relations + and ⋅ which are defined by the additive and 
multiplicative identities z + 0 = z and for any complex number z ⋅ 1 = z. C has 
the numbers i and j such that (Burgess 288):6

(R) i2=–1 ∧ j2=–1 ∧ i + j = 0.

This complex number system of ordinary mathematics exemplifies the 
complex number structure, meaning all the relational properties of the objects 
of the complex number system are structural properties of the places in the 
complex number structure (Shapiro, Philosophy 89–90). So, the relational 
properties of i and j which are captured by R are the structural properties 
of the places in the complex number structure which i and j are filling in. 
R is sufficient to describe all the structural properties of i and j.

According to II, if i and j have exactly the same structural properties, 
then they are identical. We will now show that i and j appear to have the 
same structural properties. The form of any complex number z is a + bi where 
a and b are any two real numbers. Let us now consider a mapping called 

4 When I say two objects are distinct, I mean that mathematicians talk of them as nonidentical, 
not that they are structural indiscernible.
5 See: Menzel, Burgess.
6 i2 = –1 and j2 = –1 function as shorthand for multiplication expressions.
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“complex conjugation,” which takes a complex number a + bi and maps it to 
its complex conjugate a – bi. The complex conjugate of i is j and vice versa. 
Let the result of applying complex conjugation to the complex field C be 
the field C′. C′ will have all the same elements as C and the additive and 
multiplicative identities are unaffected. Additionally, we stipulated that C 
has two numbers i and j with specific structural properties captured by R. 
Under complex conjugation, R becomes

(R′) j2=–1 ∧ i2=–1 ∧ j + i = 0

in C′. Even after applying complex conjugation, i and j retain the same 
structural properties in R′ as in R, namely i and j are still the roots of –1 
and additive inverses of each other. After mapping every element in C to 
its complex conjugate, the structural properties of i and j are unchanged, 
i and j have the exact same structural properties. From this, II entails 
that i = j, a clear violation of the faithfulness constraint.7

Complex conjugation is a nontrivial automorphism over C. It is 
an automorphism because it is an isomorphism (which is a mapping of 
one structure to another which preserves the structural relations and 
properties) which maps its domain to itself. It is nontrivial because it 
does not map every element to itself. This example is generally true: for 
a field with a nontrivial automorphism, there are objects in that field 
which share all and only all their structural properties (Keranen 323). 
By II, all objects which are mapped to each other under a nontrivial 
automorphism must be identical to each other. This leads to some 
mathematically contradictory expressions.

7 There is some technical nuance to be f leshed out. C is a mathematical ring since it has a 
multiplicative identity z ⋅ 1 = z. This makes complex conjugation a homomorphism, which is 
a mapping of one structure to another that preserves the multiplicative identity. (Isomorphisms 
are a type of homomorphisms. The distinction does not concern us here but it must be noted that 
complex conjugation is also an isomorphism.) C has the relations + and ⋅ that range over all of its 
elements, and since complex conjugation is a homomorphism, they are preserved in C′. To put this 
in the language of structuralism, the relationship every number in C has to every other number is 
the exact same after being mapped to C′ by complex conjugation. Since there is for every element 
in C an element in C′ that has the exact same relationships, namely its complex conjugate, by II the 
two elements are identical (Leinster 2). This, of course, would mean every number is identical to 
its complex conjugate. We may introduce another algebraic relation such as <, which could order 
the real numbers and be sufficient to distinguish them from each other (i.e., ¬∀x(Fx ↔ Fx*) where 
x* is the complex conjugate of x and x ranges over the real numbers). Complex conjugation would 
no longer preserve the structure of C for the real numbers, but, because there is no ordering of 
complex numbers, i and j would not benefit a distinguishing property. In fact, there is no algebraic 
relation that could be added to C that would produce a relationship from i to some other number 
that would not also be true of j (Burgess 288). In other words, complex conjugation shows that i and 
j have exactly the same structural properties (∀F(Fi ↔ Fj)), which entails i = j by II.
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2.3 The Nature of Structural Properties

A structuralist might argue that there are some structural properties, 
called haecceities, that can only apply to one object (e.g., the property 
of being identical to 2), alleviating the identity problem (Keranen 313). 
However, Keranen argues that this move is not available to structuralists. 
To introduce haecceities as structural properties, the structuralist would 
need a way to pick out a singular term denoting a place in a structure. If we 
take an existing system that exemplifies a structure to express haecceities 
by utilizing the objects in the system to denote places in structures, then 
places in structures will have properties that depend on there being a system 
that exemplifies the structure (316–317). This would violate a core notion 
of ante rem structures: “Structures exist whether they are exemplified in a 
nonstructural realm or not” (Shapiro, Philosophy 89). 

In similar fashion, if we were to stipulate a language of singular terms 
to denote places in structures to express haecceities, then the objects of 
systems exemplifying the structure would have structural properties that 
relate the objects of the system to the structure itself. This would disallow 
the system to exemplify the structure because haecceities would express 
a relation a place in a structure has to itself, but in the system it would 
express a relation between the object filling in a place in a structure and 
the corresponding place. Again, this would violate a core principle of ante 
rem structuralism because there would be no way to accurately abstract 
structural relations from systems exemplifying a structure (Shapiro, 
Structure 146). Haecceities, no matter how they are construed, seem to be 
against the spirit of structuralism. These two constraints force structural 
properties to be only the properties which can be specified without use of 
individual constants (Keranen 317).

3. Analysis of the Plausibility of Individuating Formulas

3.1 Preliminaries

Perhaps the most powerful response to this problem is a more 
mathematical approach objecting to the notion that distinct objects have 
a structurally individuating formula (a structural property that an object 
has exclusively), which would challenge the use of structural properties as 
criteria for identification. Let L be a language, or a set of constant symbols 
and non-logical predicates like + and ⋅. Let a system A that utilizes L as its 
language be an L-system. Let A be the domain of A that is the (non-empty) 
set of objects of the system, and let V be the interpretation of L that maps 
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every constant in L to an element in A and every predicate in L to a relation 
over the set A. The L-system A is denoted by the pair <A,V>. Arithmetic 
over the natural numbers is an L-system where L is the set of all the natural 
number numerals (0, 1, 2, etc.) and the arithmetic 3-place predicates + and ⋅, A 
is the set of the actual places in the natural number structure, and V takes 
the numerals and arithmetic predicates + and ⋅ and maps them to unique 
objects in A and relations over A. 

The complex field C has a similar language Lc as the natural number 
language, but it includes all the real numbers as well as the complex numbers i 
and j. Vc takes the predicates + and ⋅ and maps them to unique relations over 
Ac (which is the set of all the places in the complex number structure). We 
noted before that the structure of C is the same regardless of the order of i 
and j in R. This means that in the Lc-system C<Ac,Vc> every formula expressed 
by the predicates + and ⋅ that is true of i is also true of j. Formally, let the 
type of a ∈ L, tp(a), be the set of all formulas φ expressible in L which are 
mapped to relations over A that are true only of a. So, tp(i) in the Lc-system 
C

 
is the set of every true formula φ expressed in Lc 

that is mapped to every 
relation over Ac 

that is true of i alone. The demonstration from earlier that 
there is a nontrivial automorphism on C entails tp(i) = tp(j). Our definition 
of indiscernibility can be altered to work with this notation: a and b are 
indiscernible if and only if tp(a) = tp(b). Substituting this into II gives: a = b 
if and only if tp(a) = tp(b). Conversely: a ≠ b if and only if tp(a) ≠ tp(b). That 
is, there is some relation (an individuating formula) that is satisfied by a but 
not by b.

3.2 An Objection to the Commitment to II

The goal of this response to the identity problem is to show that the 
requirement for nonidentity that there be an individuating formula will 
lead to us having to admit additional formulas specific to certain objects 
which will turn out not to be structurally dependent on specific objects the 
formulas pertain to, or, in Menzel’s terms, this requirement will lead to over-
specification (99). As it stands, there is no individuating formula for i and j 
in C, so we must expand C in such a way that the structural properties are 
preserved to admit individuating formulas. The expansion of C is called 
C′< Ac,Vc′>. Consider a formula in C′ that individuates i: x2 = –1 ∧ x = –j. 
Clearly, this is true of i and i alone, and all the structural properties of 
C are preserved, thus tp(i) ≠ tp(j) which entails i ≠ j. However, when we 
apply the automorphism of complex conjugation to C′—call the result 
C′′—the formula used to individuate i becomes x2 = –1 ∧ x = –i, which no 
longer individuates i, but rather j. So the expansions we used to individuate i 
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are isomorphic under complex conjugation, which means the individuating 
formula is not actually a structural property of C (100).

Objection to the Commitment to II

(1) If II, then all distinct objects have an individuating 
formula.

(2) There are some distinct objects that do not have 
an individuating formula.

(3) Therefore, II cannot be the case.

The support for the first premise is as follows: If II is the case, then 
identical objects have exactly the same structural properties. Inversely, 
distinct objects do not have the same structural properties. In other words, 
for distinct objects a and b, it is not the case that all and only all structural 
properties of a are structural properties of b. If it is not the case that distinct 
objects have the same structural properties, then there is some property 
that one object has that no other object has. By definition, that property is 
an individuating formula. So, if II is the case, then distinct objects have an 
individuating formula. 

The support for the second premise is as follows: i and j are distinct 
objects. There are no algebraic properties that can individuate them in 
C (Burgess 288). To supply individuating properties, we must expand C 
to allow it to express individuating formulas for i and j. However, each 
expansion of C that individuates i is isomorphic to every expansion that 
individuates j. So expansions of C that claim to individuate i and j suffer 
from the same problem that motivated the expansion in the first place. 
Since isomorphisms are structure preserving, this reveals that i and j are not 
able to have different structural properties, even though mathematicians 
speak of them as distinct. So there appear to be a certain class of objects 
that are distinct yet structurally indiscernible.

4.  An Objection to II

I argue the identity problem comes from a misunderstanding of equality 
in mathematics: “=” seems to make a statement about the denotations of the 
terms on either side. In other words, x = y means the things which x and y 
stand in for are the exact same thing, not just that they are substitutable 
or structurally indiscernible. Whatever is written down on either side of 
“=” is part of some language L. An L-system has a distinct domain A which 
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consists of the actual objects of the structure. So, using the language of 
L-systems, a = b expresses the identity of the interpretation of a and b.

Let us return to the complex numbers i and j. The inequality i ≠ j 
means that V(i) and V(j) are not the same place in the complex number 
structure, not necessarily that they are structurally discernible. This is 
because structural indiscernibility is not what makes objects identical 
in mathematics. Rather, two objects are identical because there is some 
mathematical algorithm that can be done on one object to arrive at the 
other object. For instance, a division algorithm can be carried out on a 
fraction to arrive at the decimal equivalent. In other words, mathematics 
determines the interpretation of terms.

So, structural indiscernibility does not seem to be sufficient 
for identity. i and j have the same structural properties, which the 
faithfulness constraint was introduced to address and was evidenced by 
complex conjugation, but they are still distinct because mathematics 
does not interpret them identically. Because of the faithfulness 
constraint, structuralists do not need to provide philosophical grounds 
for the distinction between i and j. They only need to explain their 
place in mathematics and the complex number structure. Additionally, 
structuralism’s focus on structural properties does not imply that structural 
properties are related to identity. A mathematician will wholeheartedly 
admit that every instance of i could be replaced by j and vice versa without 
any alteration in meaning, but this implies only that i and j have the 
same structural properties, not that they are equal. Complex conjugation 
does not prove i = j but rather that complex numbers are defined by a sole 
expression whose solutions may be written however we desire, and the mere 
fact that there are exactly two solutions to that relationship is enough to 
distinguish the two solutions (Shapiro, Identity 287). I argue that structural 
indiscernibility does not appear to have a role in mathematical identity. 

My Objection to the Commitment to II

(1) If “=” in mathematics asserts the identity of the 
interpretation of both terms on either side of it, 
then II cannot be the case.

(2) “=” in mathematics asserts the identity of the 
interpretation of both terms on either side of it.

(3) Therefore, II cannot be the case.
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The support for the first premise is as follows: though “=” has a 
substitutive force, it asserts that the objects denoted by the terms flanking 
the equal sign are identical. The denotations are determined to be 
identical by mathematical processes and algorithms, not by philosophy. 
Ante rem structuralism seems to be able to make this move on account 
of a strong interpretation of the faithfulness constraint. So, if “=” asserts 
the interpretation of the terms flanking it, then a principle that makes 
something other than there being a mathematical algorithm to get from 
one term to the other be sufficient for identity, like II, cannot be the case. 
The support for the second premise is as follows: nonidentical terms can 
have the same interpretation and be equal. For instance, 3/2 is not the 
same term as 1.5, yet they are interpreted to the same object in the set 
of places in the rational number structure, namely that place which is as 
many places after the first place as before the second place.

There is an obvious objection: it seems as if we are making identity and 
distinctness into a rule we let mathematicians dictate as they see fit. That 
is, it seems unclear how i and j are interpreted to distinct objects when all 
of their relevant properties under ante rem structuralism are the same. We 
almost seem forced to say that i and j are distinct because mathematicians 
say so and point to the fundamental theorem of algebra as evidence,8 so 
the notion of identity seems quite dubious for structuralism if we reject II. 
However, this objection simply comes from a misunderstanding of what 
structuralism sets out to do. 

Structuralism need not unravel the metaphysics of places because, 
under the faithfulness constraint, mathematics does not explicitly 
comment on its own metaphysics besides a strong implication of reality 
and abstractness. Imaginary numbers are no exception and one of the 
stronger exemplifications of mathematicians’ silence about metaphysical 
questions. All mathematicians seems to say about imaginary numbers is 
that i and j are the two guaranteed solutions to the polynomial x2 = –1. So, 
since ante rem structuralism takes the objects of mathematics to be places 
in structures, there must be two places in the complex number structure 
that have this structural property. Ante rem structuralism has no charge 
to say anything more illuminating about i and j or the complex number 
structure. This makes structuralism rather weak in explanatory power, but 
with that come many desirable consequences, including that it does not 
challenge mathematical claims on philosophical grounds.

8 The fundamental theorem of algebra guarantees that there are exactly two solutions to the 
polynomial x2 = –1.
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5. Conclusion

Structuralism need not comment on the metaphysics of mathematics 
that deeply. Though perhaps somewhat unsatisfying, under the faithfulness 
constraint, structuralism is obligated to refrain from commenting much 
on identity. Mathematics generally presupposes identity, being defined 
implicitly by statements of primitive properties. Structuralism, by the 
faithfulness constraint, must follow suit. Structuralists are not able to say 
why there are two distinct but structurally indiscernible roots of –1, but, by 
the faithfulness constraint, that is all structuralism sets out to do.

The faithfulness constraint is a strong and very useful doctrine 
available to ante rem structuralists. It allows them to accurately describe 
mathematics and respond to difficult problems in other theories about 
the philosophy of mathematics at the expense of further philosophy. In 
this paper, I outlined structuralism, then I detailed the identity problem 
and Keranen’s metaphysical concerns. Afterwards, I explained Menzel’s 
response to the identity problem before offering my own objection to the 
legitimacy of the identity problem as a puzzle for ante rem structuralists. 
Structuralism is a unique philosophy of mathematics and, as I have shown 
here, it has a striking ability to support, on philosophical grounds, the 
results of mathematics.
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