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An Intuitive Axiomatic Development

OF Truth-Functional logic*

Gordon Dahl, Wendy Grow, and David Sundahl

INTRODUCTION

In an introductory logic course, little attention is given to the axiomatic
development of truth-functional logic. The student is first taught the concept
of validity: "in a valid argument, it is not possible for the conclusion to be

false when all the premises are true" (McKay 9). With this definition in mind,
the student is then taught to construct proofs to show that arguments are valid.
She is given a set of rules to manipulate formulas and an explanation of how to
construct proofs. How does the student know that she has enough rules to
construct proofs for any valid argument? And how does the student know that
she can construct proofs only for valid arguments?

Not until an intermediate logic class does the student encounter an an
swer to these questions. Most authors axiomatically develop a truth-functional
logic, setting up a system with a minimum number of axioms and one rule of
inference, modus ponens. For example, Irving Copi uses the following three ax
ioms and one rule of inference: Axiom 1) p3(p p). Axiom 2) (p-q)3p. Axiom 3)
(p3q)3[~(q r)=)-(r p)], and Rule 1) From p and pz)q to infer q (Copi 227-28).
While the first two axioms and the rule of inference may be intuitive enough,
the third axiom has little intuitive meaning for the beginning logic student.
Furthermore, it is not intuitively obvious that these axioms allow the student to
use the rules they have been using to construct proofs. Church's system,
Gdtlind-Rasiowa's system, Frege's system, and Lukasiewicz's system all have
similar unintuitive axioms (Copi 237).

In most intermediate logic textbooks, authors prove that their systems
are complete and consistent. Then they show that the rules the students have
been using all along to construct proofs can be derived as theorems from their
axiomatic system.

In this paper, we develop an axiomatic system of truth-functional logic
which more closely mirrors the actual way students are taught to construct
proofs. The axioms are elementary valid arguments which allow for the introduc
tion and elimination of the truth-functional operators. The rules of inference are
structural rules which allow for the combination of these elementary valid argu
ments to prove other arguments are valid. The constructed system conforms to
the intuition of a beginning logic student doing proofs.

* This pajjer was originally written for an advanced logic course (Philosophy 501R),
taught by Dr. Dennis Packard at Brigham Young University. We are indebted to Dr.
Packard for his help and encouragement in writing this paper.
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We then prove that this system is sound, compact, complete, and effec
tively enumerable. A system is sound (consistent) if only valid arguments have
proofs. A system is compact if whenever a set of assumptions imply a result, a
finite set of these assumptions imply that result; if we can construct a proof, we
can trim down the proof to a finite set of assumptions. A system is complete if
each valid argument has a proof. A system is effectively enumerable if there is an
effective procedure for generating all the proofs of valid arguments.

DEFINITIONS

DEFINmON 1; RULES OF SYNTAX

We use the standard symbols for the truth-functional operators of and,
not, if... then ... , and or. A formula is defined to be any finite concatenation of
undefined symbols in the system. However, only some of these sequences will be
regarded as well-formed formulas. Well-formed formulas are the smallest set that

includes the set of atomic formulas and is closed under the following rules:
1) If a is a formula then so is (~a)
2) If a and p are formulas then so are (oaP), (avp), and (a^P)

As a result of this definition, to show that something is true of all well-
formed formulas, we simply need to show that 1) it is true of all atomic formulas
and 2) if it is true of two formulas a and p, then it is true of any combination

which can be formed with the above rules. This is called induction over the

formulas and is similar to the way induction over the numbers works. In

mathematics, to prove a property is true for all nonnegative integers, we show
that: 1) the property is true for the number zero; and, 2) if the property is true
for an arbitrary number, then it is true for the successor of that number.

DEHNrnON 2: TRUTH ASSIGNMENT

A truth assignment is a compact way of describing a truth table. A truth
assignment, v, assigns T for true or F for false to each atomic formula. Its
extension, v, assigns T or F to each well-formed formula as follows:

1) v(~a) = T iff v(a) = F
2) v(aAp) = T iff v(a) = T and v(P) = T
3) v(avP) = T iff v(a) = T or v(P) = T
4) v(a3P) = T iff v(a) = F or v(P) = T

DEFINmON 3: SATISFACTION

We say a formula is satisfied by v iff v(a) = T. We say a formula is

satisfiable iff some truth assignment satisfies it. We also say a set of formulas is
satisfiable iff some truth assignment satisfies all formulas in the set.
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DEFINITION 4: SEMANTICAL IMPLICATION

Now we characterize valid arguments. Let T be a set of formulas and let
a be a formula. Then we say F semantically implies a, written as rt= a, iff every
truth assignment that satisfies all the formulas in F satisfies a.

DEFINITION 5: SYNTACTICAL IMPLICATION

Now we characterize proveable arguments. We say F syntactically
implies a, written as Fha, when h is the smallest relation satisfying the
following axioms and closed under the following rules of inference (F,q is
defined as FU{q}. The symbol -x- is defined as a contradiction of the form
pA-p):

Axioms. The axioms can be divided into two broad classes: elimination and

introduction of the operators a, v, d. As the classifications suggest, the
elimination axioms eliminate the operators from the hypothesis: the introduction
axioms introduce the operators into the consequence.

Elimination Axioms Introduction Axioms

And Elimination And Introduction

Axiom I. p A q hp Axiom 3. p, q h p a q
Axiom 2. p A q h q

Or Introduction

Or Elimination Axiom 6. p h p v q
Axiom 4. p V q, ~p h q Axiom 7. q h p v q
Axiom 5. p V q, ~q hp

Not Introduction

Not Elimination Axiom 9. p 3 -x— I p
Axiom 8. ~p 3 -X— h p

Hook Elimination

Axiom 10. p, p 3 q h q

Rules of Inference. We have three rules of inference (We use =» for if... then ...

in our metalanguage).
Conditional Proof
Rule I. F, phq => Fhp3q

This rule can be thought of as an introduction rule, the counterpart to
Axiom 10. Conditional proof says that if we know that a set of formulas F
unioned with p implies q, then we know that F without p implies that if p
is true then q is true.
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Additional Assumptions
Rule 2. rhp => r^l-p

This structural rule says that if a set of formulas F syntactically imply p,
then r together with the formulas in A still syntactically imply p. Notice
that this rule implies that if a set of formulas F syntactically imply p, then
we can add from one to an infinite number of formulas and still

syntactically imply p.
Consequences as Assumptions
Rule 3. Fl-p and F, p hq => F hq

This structural rule says that if a consequence is proven from a set of
formulas, then that consequence may subsequently be used as an
assumption to prove other formulas.

These last two rules of inference are intuitively assumed in the proofs
beginning logic students construct.

EXAMPLE PROOF

Here is an example of how the proofs constructed in beginning and
intermediate logic courses would be written in our truth-functional system.

Example Proof: The following is a proof of what is usually called
hypothetical syllogism, pz)q, qor l-pz>r.

RF.r,INNING LOGIC PROOF PROOF IN OUR SYSTEM

1. pz>q Premise 1. P^q, p h q Hook Elim.
2. q=)r Premise 2. p=>q, p, q^r h q Adtl. Ass. 1

3. p Assumed Premise 3. q, qurhr Hook Elim.
4.q Modus Ponens 1,3 4. [cq. p. q=r q I-r Adii ̂  i
5.r ModusPonun,2,4 5. p=q. q=>r pi-r Con. dss. 2 4

6.p=r CondiUonal Proof 3-5 6. p=q, q=, P p=r CoMPf.S

THEOREMS

As a result of our definition of syntactical implication, we can show by
induction over implication (much like induction over the numbers or well-
formed formulas) that our system is both sound and compact. To prove these
two desired properties for our truth-functional system, we must show that 1) the
axioms of our system have the desired property and 2) the rules of inference pre
serve the desired property. We can also show that our system is effectively enu
merable and complete. Note that we are constructing metatheorems for sound
ness, compactness, effective enumerability, and completeness. That is, we are
constructing proofs about our proof system outside of the truth-functional
system we have created. Notice also that each of the axioms and rules of in
ference are required at least once in the following theorems.
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SOUNDNESS

r ho => r t=o

Soundness says that if a set of formulas, r, syntactically implies a formula a,
then r semantically implies o.

1) We first prove that each of the axioms are sound.
Prooffor Axiom l.p.q h P

Assume that v satisfies p, q. By Definition 3, this means v(p)=T and
v(q)=T which by Definition 2 implies v(pAq)=T, which by Definition 3
means v satisfies paq. Therefore, by Definition 4, p,q 1= pAq.

Proof for Axiom 10. p.p i^q j- q
Assume that v satisfies p,p3q. By Definition 3, v(p)=T and v(p3q)=T. By
Definition 2, v(p)=F or v(q)=T. Since v(p)=T, it must be the case that
v(q)=T. By Definition 3, v satisfies q. Thus, by Definition 4, p,p=>q I- q.

These two proofs are typical of how the proofs of soundness for the other
axioms proceed.
2) We now prove that the three rules of inference preserve soundness. For each
rule of inference, we assume that the hypothesis is sound and show that the
consequence is sound.

Proof for Rule 1. r,p f-q => Pj-p^q
Assume F, p 1= q. Using Definition 4, if v satisfies F, p then v satisfies
q. Assume v satisfies F. Show v satisfies poq. We use proof by cases.
Case I: v(p)=F. By Definition 2, v(p=>q)=T and thus by Definition 3, v
satisfies p=)q. Case 2: v (p)=T. Using Definition 3, v satisfies p, so v
satisfies F, p. Together with our initial assumption, this implies v
satisfies q. By Definition 3, v(q)=T which implies by Definition 2 that
v(p3q)=T and thus by Definition 3, v satisfies p^q. Hence, by Definition
4, F l=pz>q.

Proof for Rule 2. rf-p => F, A j-p
Assume F1= p. By Definition 4, if v satisfies F then v satisfies p. As
sume V satisfies F, A. The fact that v satisfies F, together with our initial
assumption implies that v satisfies p. Therefore, by Definition 4, FA N p.

Proof for Rule 3. Pj-p and P.pj-q => Phq
Assume F Np and F,p Nq. By Definition 4, 1) if v satisfies F then v
satisfies p and 2) if v satisfies F, p then v satisfies q. Assume v
satisfies F. By 1), v satisfies p, so v satisfies F,p. Together with 2), this
implies v satisfies q. Thus, by Definition 4, F Nq.
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COMPACTNESS

r ho ̂  r" ho, where P is a finite subset of f
Compactness says that if a set of formulas F implies a formula o, then

some finite subset of F implies o. Notice that axiomatic systems of truth-func
tional logic which use modus ponens as the one and only rule of inference
trivially satisfy compactness, since the hypothesis of modus ponens is finite.
However, compactness is not automatic for our system, since the hypotheses of
our rules of inference can be infinite sets of formulas.

1) Compactness is automatically proven for the axioms since the hypothesis of
each axiom is finite.

2) We now prove that the three rules of inference preserve compactness. For
each rule of inference, we assume that the hypothesis is compact and show that
the consequence is compact

Proof for Rule 1. F.p j-q PhP ̂
Assume F,p hq is compact. Then there exists a P which is a finite subset
of F,p such that P hq. P-{p),p hq since if p is already in P then P-
{p},p simply equals P, which imphes q, and if P does not contain p then
P-{p),p equals P,p, which implies q by by additional assumptions. By
conditional proof,T°-[p] hp=>q, where F^-ip) is a finite subset of F, as
required.

Proof for Rule 2. r j-p => F.Aj-p
Assume F h p is compact. Then there exists a P which is a finite subset
of F such that P hp. Note that P is a finite subset of F,A.

Proof for Rule 3. F/-p and F, p l-q => Fl-q
Assume F hp and F, p hq are compact. Then there exists a P which is a
finite subset of F such that P h p and a F* which is a finite subset of F, p
such that F* hq. By additional assumptions, P,F*-{p} h p. We also know
thatF*-{p),p hq since if p is in F*, then F*-{p}, p simply equals F*, which
implies q, and if F* does not contain p then F*-{p}, p equals F*,p which
implies q by additional assumptions. Using additional assumptions again,
P,F*-{p},p hq. Using consequences as assumptions , F°,F -{p} h q.
Notice that P,F*-{p} is the union of finite subsets of F and is thus itself a
finite subset of F.

EFFECTIVE ENUMERABIUTY

We now show that our system is effectively enumerable. By effectively
enumerable, we mean that there is some procedure which requires no ingenuity,
has no randomness, and takes only a finite number of steps to list each of the
consequences of our system. The idea behind effective enumerabihty is that there
is a procedure to generate all of the consequences of our system.



Truth-Functional Logic 41

Proof. In our system, each axiom has a countable number of instantiations.
We know by compactness that we only need to consider a finite set of
assumptions for our rules of inference. If a set of formulas does imply a
consequence, then there will be a finite number of axioms and rules of

inference which (by hook elimination or add introduction and then hook
elimination) implies the consequence. That is, for each of the consequences
of our system, we have a finite sequence of formulas which proves it. Since
we can generate all possible sequences, we have a way of effectively
ennumerating all of the consequences of our system.

COMPLETENESS

rNo => rho

Completeness says that if T semantically implies o, then F syntactically
implies o; that is, if o is a valid consequence of F, then we can construct a proof
using our axioms and rules of inference.

The proof is divided into 5 lemmas. 1) We first show that if any
consistent set of formulas is satisfiable, then semantical implication implies
syntactical implication. 2) We next show that we can find a maximal, consistent
extension of a consistent set of formulas. 3) We then show that any maximal,
consistent extension of a consistent set of formulas is what we call a truth-

functional description of the world. 4) We next show that any truth-functional
description of the world is satisfiable. 5) We finally show that any consistent set
of formulas is satisfiable. Together, these steps imply that our system is
complete.

USEFUL RESULTS

Before proving the 4 lemmas used to prove completeness, we include
some results of our truth-functional system that will be useful in proving lemmas
one and three. We define a set to be consistent if the set does not syntactically
imply a contradiction. We also define a set to be maximal if the set contains
every formula or its negation.

Result 0) All of the axioms can be generalized. That is, we can add a set of
formulas to the assumptions of each axiom. For example, we can generalize and
elimination : F,aAp ha.

Proof. We can add a set of formulas to the assumption of any axiom using
additional assumptions.

Result 1) F,~a h^<- => F ha (Indirect Proof)
Proof. Assume F,~a h^<—. By conditional proof, F h~az)^^. By

generalized hook elimination F,~a l-a. Using consequences as
assumptions, F h a.

Result 2) F ha and FI—a => rhaA~a
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Proof. Assume rf-a and r h~a. Show r l-aA~a. By generalized and
introduction, r,a,~a l-aA~a. Using consequences as assumptions twice, r
l-aA~a.

Result 3) aer => Fl-a
Proof. Assume aeT. By generalized and introduction, r, a haAa. By

generalized and elimination, r,a,aAa I-a. Using consequences as
assumptions, r,a 1-a. Sinceaer, r,a=r. Hence, rha.

Result4) If r is maximal and consistent, then rha =» aeF
Proof. Assume rha. Assume aeF. By maximality, ~aeF. By Result 2, F h

ciA-a, a contradiction of consistency. Therefore, ae F.
Result 5) F,~~a h a and F,a I—~a

Proof. Using generalized and introduction, T,—a,~a I aA-a. By
generalized conditional proof, F,—a h ~a3~~aA~a. By generalized not
elimination, F,—a,~az)—aA~a h a. Hence, using consequences as as
sumptions, F,—a ha. The proof for F,a I a is similar and uses not
introduction.

LEMMA 1

If all consistent sets of formulas are satisfiable, then for any F, F N a => F ha.
Proof. Assume all consistent sets of formulas are satisfiable and that Fl=a.

Assume F ha. Together with Result 1, this implies that F,~a h-^. Hence
F,~a is consistent and thus satisfiable. Hence F h'^a, which is a
contradiction. Therefore F ha.

LEMMA 2

Given a consistent set of formulas F, we can find a maximal, consistent extension
F^ofF.

Proof: Let F be a consistent set of well-formed formulas. Let a^ ... a^^... be
an enumeration of all well-formed formulas. Construct F^, an extension of
F, as follows;

F+ , = F+ , a , if F^ , a , is consistent
n+1 n* n+1 n' n+l

p- , ~a , otherwise
n' n+1

p= u p.
1

F^ is maximal; by construction, F^ contains each formula or its negation.
F^ is consistent. If F^ were not consistent, then by the compactness
theorem, a finite subset of F^, call it F°, would necessarily imply a
contradiction. This finite subset, which has a largest formula, a., implies

the contradiction. Note that F° is a subset of Pj for i. This implies some
P. implies a contradiction, which means Pj is not consistent. But by the
way we have constructed F^, it is consistent. Thus, F^ must be consistent
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LEMMA 3

Any maximal, consistent extension of F is a truth-functional description of the
world. That is, any maximal, consistent extension F* of F, satisfies the
following conditions:

1) (~a)eF^ iff a«F^

2) (aAP)€ F*^ iff ae P" and Pe P

3) (avp)e P iff ae P or pe P
4) (a3P)€ P iff if as P then Pg P

The proof proceeds by showing that P satisfies each of the above conditions:
Proof of 1) -aeP iffagP*

=>: Assume -ae P. Assume ae P. Using Result 3, P I—a and P I- a.
Using Result 2, P l-aA~a. But P is consistent, so ogP.

<=: Assume ogP. Show -aeP. By maximality, every formula or its
negation is an element of P, so ~aG P.

Proof of 2) co\P£ n iff as n and Pe
=>: Assume OAPeF^. Assume ogP or PgF^. By Result 4, F^ 1-aAp.

Case 1: ogP. By maximality, -aGp, and thus using Result 3, P
I—a. By additional assumptions, P,aAp I—a. Using generalized and
elimination, P,aAp ha. Using consequences as assumptions, P h
a. Using Result 2, F"^ htXA-a, which contradicts the consistency of
F+. Case 2: p« F+, is similar to case 1 and results in the same

contradiction. Thus, aeP and PgP.

<=: Assume acF^ and PgF^. Assume uaP^F^. By maximality,
~(aAP)GP. Using Result 3, P ha and P hp. By the generalization
of and introduction, F^,a,p haAp. Using consequences as as
sumptions twice, P haAp. Using Result 2, F"^ h(aAP)A~(aAP), a
contradiction of consistency. Thus, oaPg P.

Proof of 3) avPeP iff aeP or /JeP
=>: Assume avpe P. Assume as P and Pg P. By Result 4, -as P and

-Pe P. By Result 3, P havp, P h~a, and P I—p. By generalized
or elimination, T*,~^,a\/^,~a Using consequences as
assumptions three times, F"^ hp. By Result 2, F^ hpA~p, a
contradiction of consistency. Therefore, ae P or pe P.

«=: Assume aeP or PeP. Show avPeP. Case 1: aeP. Using Result

3, F* ha. By generalized or introduction, F^,a havp. Using
consequences as assumptions, P havp. Using Result 2, avpe F^.
Case 2: Pg P, is similar and results in avpe P. Therefore, avpe P.

Proof of 4) ocdPsP iff if aeP then peP
=>: Assume aoPGF^. Assume aeF^. Show PgF^. By Result 3, F"^ h

aop and P ha. By generalized hook elimination, P, a^p.a hp.
Using consequences as assumptions twice, F* hp. Hence, using

Result 3, Pg P. Therefore, if ae P then Pg P.
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«=: Assume if ae r+ then Pe r+. This is the same as ae or Pe r+.
Show aDpel^. Case 1: a«r^. By maximality, ~ae By Result 3,
T"^ h-a. By generalized or introduction, I—avp. Using
consequences as assumptions, T* \—avp. Using Result 5, F+.a l-
—a. Using additional assumptions, F^,~avp,a I a. By generalized
or elimination, r*,~as/^,—a.a hp. Using consequences as
assumptions, F^,~avp,a hp. By conditional proof, F+,~avp haDp.
Using consequences as assumptions, F+ ha^p. Case 2: pe F"^, is
similar and results in F^ ha^p. Therefore, F^ haop.

LEMMA 4

Any truth-functional description of the world is satisfiable. Hence, F*, as defined
above, is satisfiable.

Proof. We construct a truth assignment that satisfies F^. We assign v(X,)=T
for each atomic element ̂  F*" and v(X)=F for each atomic element "ki F^.
The proof proceeds by induction over the formulas.

1) We first prove that the atomic elements satisfy F^.
Proof. Given an atomic element X, Xe F^ iff »'(X)=T by assignment.

2) We now prove that formulas built up using the rules of syntax satisfy F^.
Proof for ~aen iffv(~a)=T

Assume ae F^ iff v(a)=T and Pe F^ iff v(P)=T. By assumption, ae F^ iff
v(a)=F. By Lemma 3, -ae F* iff ae F*. By Definition 2, v(~a)=T iff
v(a)=F. Hence -ae F^ iff v(-a)=T.

Prooffor iff v( a/\f)=T
Assume ae F^ iff v(a)=T and pe F^ iff v(P)=T. By Lemma 3, ae n and
PeF^. By Definition 2, v(aAP)=T iff v(a)=T and v(P)=T. Hence OAPeF^
iffv(aAP)=T.

The proofs for avpeF'^ iff v(avP)=T and aDpeF"^ iff v(a3P)=T proceed
similarly.
LEMMAS

All consistent sets of formulas are satisfiable.

Proof. Assume F is a consistent set of formulas. By Lemma 2, there is a
maximal, consistent extension F^ of F. By Lemma 3, F^ is a truth-
functional description of the world. By Lemma 4, F^ is satisfiable. Since F
is a subset of F^, F itself is satisfiable. Thus all consistent sets of
formulas are satisfiable. By Lemma 1, completeness follows.

As a final comment, note that a system similar to our truth-functional system
could be constructed to include quantificational logic. We would simply need to
add introduction and elimination rules for the universal and existential quanti
fiers.
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